Computational Fluid Dynamics (CFD)

Navier-Stokes + Incompressible + Finite difference method

Discretization methods for approximating the Partial Differential Equations (PDEs):

  1. Finite Difference (FD) \checkmark
  2. Finite Elements (FE)
  3. Finite Volume (FV)

Finite Difference (FD)

Taylor’s polynomial

    \[f(x_0 + h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f^{(2)}(x_0)}{2!}h^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}h^n + R_n(x) \]

    \[f'(a)\approx {f(a+h)-f(a)\over h}. \]

    \[f'(a)\approx{f(a+h)+f(a-h)-2f(h)\over \Delta h^2 \]

Continue reading “Computational Fluid Dynamics (CFD)”

Fluid Dynamics

Navier-Stokes Equation

\rho [kg/m^3] : fluid density

\mu  [Pa\cdot s] : dynamic viscosity

\nu [N/\rho=m^2/s] : kinematic viscosity

\vec{V}=(u,v,w) [m/s] : velocity

\forall : volume

Conservation of mass

  1. For a system:

        \[ \frac{d}{dt}M_{SYS}=0 \]

  2. For a C.V. (Reynolds transport theorem):\]

    \[\frac{\partial}{\partial t}\int_{CV}{\rho d\forall}+\int_{CS}{\rho \vec{V}\cdot \hat{n} dA}=0 \]

Differential form (\delta x\delta y\delta z):

    \[ \frac{\partial}{\partial t}\int_{CV}{\rho d\forall}=\frac{\rho}{\partial t} \delta x\delta y\delta z \]

Continue reading “Fluid Dynamics”