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1

Basics

a=b(modm) <> a—b=Am,\eZ

1.

2.

3.

Reflexibity
Simmetry

Transivity

if a1 = by (mod m),as = ba(mod m),az = bs(mod m) then:

a+k=b+ k(modm)

ak = bk(modm)

a1 + az = by + ba(mod m)

ayag = biba(mod m)

a® = v*(mod m)

a+k=b+ k(modm) — a=b(modm)
ak = bk(mod m) A ged(k,m) =1 — a = b(mod m)
a~! < ged(a,m) =1

a~t = b1 (modm)

ax = b(mod m) — x = a~'b(mod m)
a?™ = 1(mod m)

(p— D!'=—1(modm)

2 Great Common Divisor (GCD)

Euclides Algorithm is used to solve this problem.

a=bqg+r

gcd(a,b) = ged(byr) = ... = ged(c,1) = ¢

3 Least Common Multiple (LCM)

We can calculate the LCM using GCD:

lem(a,b) = ab/gcd(a, b)



4 Bezout’s Theorem

Using Euclides Algorithm we are able to find uandv, where:

ged(a,b) = au+bv:u,v €Z

5 Number Decomposition

This algorithm could be optimized because we only need to look numbers below
v/n, and thus, the time is reduced.

6 a’(modm)

we are not always to compute high numbers with big exponents, and hence we
need another way that simplifies:

we write b in binary, such as: ajas ... a,, where a;is 0 or 1.

a’(modm) = a® ...a% (modm) and a®+!(mod m) = (a®")?(mod m)

7 Primality Test

This algorithm tells you, whether a number is prime or not (optimized).

8 Find next Prime

This function is important in cryptography. It uses an initial number and finds
the next prime over the number given.

9 Euler’s Totient Function

We need the number decomposition algorithm mentioned before.

p(n) = (pr — Lpft "5 (pn — 1)ply !

10 Linear Equation Solver
azx = b(mod m), blgcd(a, m)

To solve the equation, we divide by d := ged(a, m)

a'dr = b'd(modm'd) — o'z =V (modm’)

We use Bezout:



du+mv=1
Then, we multiply by ':

b = a'bu + m'vb = a'du(mod m)
r=du

xo=du+0m' vy =du+1m',... 24 1 =du+ (d—1)m’

There are dsolutions for this equation

11 Inverse

The inverse of a number in mod m is calculated using the linear solver:
a~tx = 1(mod m)

12 System of Equations

Solving a system of equations is done by constantly solving two equations.

a1z = by ( mod my)
asx = bo( mod mo)

ged(my,ma) =1 = myu+ mov

T = myiure + movzy, where z1and xqare the solutions for each equation.
We repeat the process:

x = b(mod mims)
ag = bz(mod ms)



