Modular Arithmetic
Daniel López Montero
November 2, 2019

Contents

1 Basics 2
2 Great Common Divisor (GCD) 2
3 Least Common Multiple (LCM) 2
4 Bezout's Theorem 3
5 Number Decomposition 3
$6 a^{b}(\bmod m)$ 3
7 Primality Test 3
8 Find next Prime 3
9 Euler's Totient Function 3
10 Linear Equation Solver 3
11 Inverse 4
12 System of Equations 4

1 Basics

$a \equiv b(\bmod m) \leftrightarrow a-b=\lambda m, \lambda \in \mathbb{Z}$

1. Reflexibity
2. Simmetry
3. Transivity
if $a_{1} \equiv b_{1}(\bmod m), a_{2} \equiv b_{2}(\bmod m), a_{3} \equiv b_{3}(\bmod m)$ then:

- $a+k \equiv b+k(\bmod m)$
- $a k \equiv b k(\bmod m)$
- $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod m)$
- $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod m)$
- $a^{k} \equiv b^{k}(\bmod m)$
- $a+k \equiv b+k(\bmod m) \rightarrow a \equiv b(\bmod m)$
- $a k \equiv b k(\bmod m) \wedge g c d(k, m)=1 \rightarrow a \equiv b(\bmod m)$
- $a^{-1} \leftrightarrow g c d(a, m)=1$
- $a^{-1} \equiv b^{-1}(\bmod m)$
- $a x \equiv b(\bmod m) \rightarrow x=a^{-1} b(\bmod m)$
- $a^{\phi(m)} \equiv 1(\bmod m)$
- $(p-1)!\equiv-1(\bmod m)$

2 Great Common Divisor (GCD)

Euclides Algorithm is used to solve this problem.

$$
\begin{gathered}
a=b q+r \\
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)=\ldots=\operatorname{gcd}(c, 1)=c
\end{gathered}
$$

3 Least Common Multiple (LCM)

We can calculate the LCM using GCD:

$$
\operatorname{lcm}(a, b)=a b / g c d(a, b)
$$

4 Bezout's Theorem

Using Euclides Algorithm we are able to find u and v, where:

$$
\operatorname{gcd}(a, b)=a u+b v: u, v \in \mathbb{Z}
$$

5 Number Decomposition

This algorithm could be optimized because we only need to look numbers below \sqrt{n}, and thus, the time is reduced.
$6 a^{b}(\bmod m)$
we are not always to compute high numbers with big exponents, and hence we need another way that simplifies:
we write b in binary, such as: $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$, where α_{i} is 0 or 1 .
$a^{b}(\bmod m)=a^{\alpha_{1}} \ldots a^{\alpha_{n}}(\bmod m)$ and $a^{\alpha_{n+1}}(\bmod m)=\left(a^{\alpha_{n}}\right)^{2}(\bmod m)$

7 Primality Test

This algorithm tells you, whether a number is prime or not (optimized).

8 Find next Prime

This function is important in cryptography. It uses an initial number and finds the next prime over the number given.

9 Euler's Totient Function

We need the number decomposition algorithm mentioned before.

$$
\phi(n)=\left(p_{1}-1\right) p_{1}^{t_{1}-1} * \cdots *\left(p_{n}-1\right) p_{n}^{t_{n}-1}
$$

10 Linear Equation Solver

$$
a x \equiv b(\bmod m), b \mid g c d(a, m)
$$

To solve the equation, we divide by $d:=\operatorname{gcd}(a, m)$

$$
a^{\prime} d x \equiv b^{\prime} d\left(\bmod m^{\prime} d\right) \rightarrow a^{\prime} x \equiv b^{\prime}\left(\bmod m^{\prime}\right)
$$

We use Bezout:

$$
a^{\prime} u+m^{\prime} v=1
$$

Then, we multiply by b^{\prime} :

$$
\begin{gathered}
b^{\prime}=a^{\prime} b u+m^{\prime} v b \equiv a^{\prime} d u(\bmod m) \\
x=d u \\
x_{0}=d u+0 m^{\prime}, x_{1}=d u+1 m^{\prime}, \ldots, x_{d-1}=d u+(d-1) m^{\prime}
\end{gathered}
$$

There are dsolutions for this equation

11 Inverse

The inverse of a number in mod m is calculated using the linear solver: $a^{-1} x \equiv 1(\bmod m)$

12 System of Equations

Solving a system of equations is done by constantly solving two equations.

$$
\begin{gathered}
\left\{\begin{array}{l}
a_{1} x \equiv b_{1}\left(\quad \bmod m_{1}\right) \\
a_{2} x \equiv b_{2}\left(\quad \bmod m_{2}\right)
\end{array}\right. \\
\operatorname{gcd}\left(m_{1}, m_{2}\right)=1=m_{1} u+m_{2} v
\end{gathered}
$$

$x=m_{1} u x_{2}+m_{2} v x_{1}$, where x_{1} and x_{2} are the solutions for each equation. We repeat the process:

$$
\left\{\begin{array}{l}
x \equiv b\left(\bmod m_{1} m_{2}\right) \\
a_{3} \equiv b_{3}\left(\bmod m_{3}\right)
\end{array}\right.
$$

